skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Truby, Ryan_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent advances in computational design and 3D printing enable the fabrication of polymer lattices with high strength‐to‐weight ratio and tailored mechanics. To date, 3D lattices composed of monolithic materials have primarily been constructed due to limitations associated with most commercial 3D printing platforms. Here, freeform fabrication of multi‐material polymer lattices via embedded three‐dimensional (EMB3D) printing is demonstrated. An algorithm is developed first that generates print paths for each target lattice based on graph theory. The effects of ink rheology on filamentary printing and the effects of the print path on resultant mechanical properties are then investigated. By co‐printing multiple materials with different mechanical properties, a broad range of periodic and stochastic lattices with tailored mechanical responses can be realized opening new avenues for constructing architected matter. 
    more » « less